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Suggested Solution to Problem Set 1

Notations: We use R to denote a rectangle in Rn throughout this problem set.

Problems to hand in

1. Let f : R = [0, 1]× [0, 1] → R be a bounded function defined by

f(x, y) :=

{
1 if y < x,

0 if y ≥ x.

Prove, using the definition, that f is integrable and find
∫
R f dV .

Solution. For each n ∈ N, let Pn := {Ci,j := [ i−1
n , i

n ] × [ j−1
n , j

n ] : 1 ≤ i, j ≤ n} be a partition of

R. By counting the number of rectangles in Pn lying inside the region y < x, it is easy to see

that

L(f,Pn) =
(n− 1)(n− 2)

2n2
and U(f,Pn) =

(n+ 1)n

2n2
.

Thus,
1

2
≤ sup

P
L(f,P) ≤ inf

P
U(f,P) ≤ 1

2
.

By definition, f is integrable on R and

∫
R
f dV =

1

2
.

2. Let f : R = [0, 1]× [0, 1] → R be the function

f(x, y) :=

{
1/q if x, y ∈ Qand y = p/q where p, q ∈ N are coprime,

0 otherwise

Prove, using the definition, that f is integrable and find
∫
R f dV .

Solution. we know f(x, y) ≥ 0 , so
∫
R fdV ≥ 0 , on the other hand , let

Xn = {x ∈ Q|x = p/q, p ≤ q ∈ Z} number of object of Xn will not bigger than 1+2+3+ . . . n =

n(n+ 1)/2 .then we can define Yn = {y ∈ R|exist some x ∈ Xn such that |y − x| < 1/n4}∫
R
f(x, y)dV =

∫
[0,1]×Yn

fdV+

∫
R\[0,1]×Yn

fdV ≤ 2× 1

n4
×n(n+ 1)

2
+

∫
R\[0,1]×Yn

1

n+ 1
dV ≤ n+ 1

n3
+

1

n+ 1
(1)

let n → ∞ , we get
∫
R f ≤ 0 , so

∫
R f = 0 .

3. Suppose f : R → R is a non-negative continuous function such that f(p) > 0 at some p ∈ R.

Prove that
∫
R f dV > 0.



Solution. Let ε0 := f(p)
2 > 0. Since f is continuous at p, there exists δ > 0 such that for all

x ∈ Bδ(p) ∩R, we have |f(x)− f(p)| < ε0 =
f(p)
2 , and hence, by triangle inequality,

f(x) = |f(x)| > |f(p)|
2

= ε0.

Choose a rectangle R′ such that p ∈ R′ ⊆ Bδ(p) ∩R.

Now, given any partition P of R, we have

U(f,P) =
∑
K∈P

sup
x∈K

f(x)Vol(K)

≥
∑

K∈P,K∩R′ ̸=∅

sup
x∈K

f(x)Vol(K)

≥ ε0
∑

K∈P,K∩R′ ̸=∅

Vol(K)

≥ ε0Vol(R
′).

Since f is continuous, hence integrable, we have∫
R
f dV = inf

P
U(f,P) ≥ ε0Vol(R

′) > 0.

4. Let f : R → R be a bounded integrable function . Prove that |f | also integrable on R and

|
∫
R fdV | ≤

∫
R |f |dV .

Solution. easily we know |x− y| ≥ ||x| − |y|| , so

U(f, P )−L(f, P ) =
∑
Pi∈P

[ sup
x∈Pi

f(x)− inf
x∈Pi

f(x)]V ol(Pi) ≥
∑
Pi∈P

[ sup
x∈Pi

|f(x)|− inf
x∈Pi

|f(x)|]V ol(Pi) (2)

= U(|f |, P ) − L(|f |, P ) so we know |f | integrable , on the other hand , −|f | ≤ f ≤ |f | ,

−
∫
R |f |dV =

∫
R −|f |dV ≤

∫
R fdV ≤

∫
R |f |dV , which means |

∫
R fdV | ≤

∫
R |f |dV

5. Let f : R → R be a bounded integrable function. Suppose p is an interior point of R at which f

is continuous . Prove that

lim
δ→0+

1

Vol(Bδ(p))

∫
Bδ(p)

f dV = f(p). (3)

Solution. because f continue , so for all ε > 0 there exist δ > 0 such that when d(x, p) < δ we

can get |f(x)− f(p)| < ε , so we have

1

Vol(Bδ(p))
|
∫
Bδ(p)

f − f(p)dV | ≤ 1

Vol(Bδ(p))

∫
Bδ(p)

|ε|dV =
1

Vol(Bδ(p))
×Bδ(p)× ε = ε (4)



so when δ → 0 we can let ε → 0 then finally get

lim
δ→0+

1

Vol(Bδ(p))

∫
Bδ(p)

f dV = f(p). (5)

Suggested Exercises

1. Let f, g : R → R be bounded integrable functions. Prove that f + g is integrable on R and∫
R
(f + g) dV =

∫
R
f dV +

∫
R
g dV.

Solution. Let P ′
1,P ′

2 be two partitions of R. Let P ′ be a common refinement of P ′
1,P ′

2. By the

properties of infimum and refinement,

L(f + g,P ′) ≥ L(f,P ′) + L(g,P ′) ≥ L(f,P ′
1) + L(g,P ′

2).

So,

sup
P

L(f + g,P) ≥ L(f,P ′
1) + L(g,P ′

2).

Since P ′
1,P ′

2 are arbitrary, we have

sup
P

L(f + g,P) ≥ sup
P1

L(f,P1) + sup
P2

L(g,P2). (6)

By a similar argument, we see that

inf
P

U(f + g,P) ≤ inf
P1

U(f,P1) + inf
P2

U(g,P2). (7)

As f, g are bounded integrable functions on R, we have

sup
P1

L(f,P1) = inf
P1

U(f,P1) =

∫
R
f dV and sup

P2

L(g,P2) = inf
P2

U(f,P2) =

∫
R
g dV.

Hence, (6) and (7) imply that∫
R
f dV +

∫
R
g dV ≤ sup

P
L(f + g,P) ≤ inf

P
U(f + g,P) ≤

∫
R
f dV +

∫
R
g dV.

Therefore,

sup
P

L(f + g,P) = inf
P

U(f + g,P) =

∫
R
f dV +

∫
R
g dV.

By definition, f + g is integrable on R and∫
R
(f + g) dV =

∫
R
f dV +

∫
R
g dV.



2. Let f : R → R be a bounded integrable function defined on a rectangle R ⊂ Rn. Suppose

g : R → R is a bounded function such that g(x) = f(x) except for finitely many x ∈ R. Show

that g is integrable and
∫
R g dV =

∫
R f dV .

Solution. Let P be a partition of R. Since a point in R is contained in at most 2n rectangles in

P, the upper sum (and lower sum) of f and g differ by at most

#{x ∈ R : f(x) ̸= g(x)} · 2n · sup
x∈R

|f(x)− g(x)| · sup
C∈P

Vol(C).

As the partition P gets finer and finer, sup
C∈P

Vol(C) → 0. It is then straightforward to show that

g is also integrable and
∫
R g dV =

∫
R f dV .

Challenging Exercises

1. Let f be a bounded integrable function on R. Prove that for any ϵ > 0, there exists some δ > 0

such that whenever P is a partition of R with diam(Q) < δ for all Q ∈ P, and xQ ∈ Q is any

arbitrarily chosen point inside Q ∈ P, we have∣∣∣∣∣∣
∑
Q∈P

f(xQ)Vol(Q)−
∫
R
f dV

∣∣∣∣∣∣ < ϵ.

(The sum in the above expression is what we usually call the “Riemann sum”!)

Solution. It suffices to note that given a partition P and arbitrarily chosen points xQ ∈ Q for

each Q ∈ P, we have

L(f,P) ≤
∑
Q∈P

f(xQ)Vol(Q) ≤ U(f,P),

and

L(f,P) ≤
∫
R
f dV ≤ U(f,P).


